

TEDU MATH SEMINARS

Waring-Goldbach Problem with Sparse Subsets of Primes

Yıldırım AKBAL

Basic Sciences Unit, TED University

Abstract:

Classical Waring-Goldbach problem concerns representability of all large integers satisfying a certain local condition as sums of fixed number of kth powers of prime numbers where $k \ge 1$. For instance Goldbach's conjecture states that every *even* number ≥ 4 can be expressed as a sum of two primes. Denoting by H(k) the least integer s such that every sufficiently large positive integer satisfying the aforementioned local condition may be expressed as a sum of s kth powers of primes. Following the pioneering work of Vinogradov (1937) (which yields $H(1) \le 3$), Hua (1938-1959) showed that $H(k) \le 2^k + 1$. He then reduced his bound to $H(k) \le 4k \log k(1 + o(1))$ for every large k. In this talk, we shall look at Waring-Goldbach problem with primes chosen from Piatetski Shapiro sequences; sequences of the form $\{\lfloor n^c \rfloor\}_{n=1}^{\infty}$ where c > 1. Such sequences are known to contain infinitely many primes when 1 < c < 1.18.

DATE: 11.05.2017
TIME: 16:00
PLACE: TED University, A216