TEDU MATH SEMINARS

Waring-Goldbach Problem with Sparse Subsets of Primes

Yıldırım AKBAL

Basic Sciences Unit, TED University

Abstract

: Classical Waring-Goldbach problem concerns representability of all large integers satisfying a certain local condition as sums of fixed number of k th powers of prime numbers where $k \geq 1$. For instance Goldbach's conjecture states that every even number ≥ 4 can be expressed as a sum of two primes. Denoting by $H(k)$ the least integer s such that every sufficiently large positive integer satisfying the aforementioned local condition may be expressed as a sum of $s k$ th powers of primes. Following the pioneering work of Vinogradov (1937) (which yields $H(1) \leq 3$), Hua (1938-1959) showed that $H(k) \leq 2^{k}+1$. He then reduced his bound to $H(k) \leq 4 k \log k(1+o(1))$ for every large k. In this talk, we shall look at Waring-Goldbach problem with primes chosen from Piatetski Shapiro sequences; sequences of the form $\left\{\left\lfloor n^{c}\right\rfloor\right\}_{n=1}^{\infty}$ where $c>1$. Such sequences are known to contain infinitely many primes when $1<c<1.18$.

DATE: 11.05.2017
TIME: 16:00
PLACE: TED University, A216

